

Bloomington Route Optimization Study

PUBLIC AND STAKEHOLDER MEETINGS - MARCH 2019

Project Background

- Two primary transit operators in the City: BPTC and IU
 - 40,000 IU students account for 70% of BPTC ridership
- Strong ridership growth over past 35 years, but recent declines
 - Each system caries approximately 3 million riders per year
 - BT peaked at 3.5 million; IUCB peaked at 3.7 million
- Ridership declines in line with national trends
 - Changing mobility landscape
 - Changing market and development patterns

Project Goals

- Identify strengths and weaknesses of existing systems
 - Review travel patterns
 - Assess system efficiency
 - Identify unmet transit needs
- Recommend service improvements
 - Serve existing riders better
 - Attract new riders
 - Improve over-all system efficiency
 - Consider innovative solutions and emerging technologies

Project Approach

Market Analysis

Survey Findings

- Open for approximately two months (November-December 2018)
- 625 surveys submitted
 - 33% regular riders
 - 36% occasional riders
 - 30% non-riders

Service Analysis

City Service

City	Service Provider	Operating Expense Per Passenger Trip	Operating Expense Per Revenue Hour	Passenger Trips Per Revenue Hour	Passenger Trips Per Revenue Mile
Bloomington, Ind.	Bloomington Public Transportation Corporation	\$2.02	\$70.59	34.92	3.31
Athens, Ga.	Athens Transit System	\$3.58	\$76.94	21.48	1.88
Charlottesville, Va.	Charlottesville Area Transit	\$3.39	\$75.99	22.42	2.18
Flagstaff, Ariz.	Northern Arizona Intergovernmental Public Transportation Authority	\$3.04	\$84.00	27.67	2.28
Iowa City, Iowa	Iowa City Transit	\$3.16	\$91.02	28.77	2.20
Missoula, Mont.	Missoula Urban Transportation District	\$3.21	\$99.49	31.01	2.23
Muncie, Ind.	Muncie Indiana Transit System	\$3.92	\$96.91	24.72	1.78
	Peer Average	\$3.19	\$84.99	27.28	2.27

University Service

City	University	Operating Expense Per Passenger Trip	Operating Expense Per Revenue Hour	Passenger Trips Per Revenue Hour	Passenger Trips Per Revenue Mile
Bloomington, Ind.	Indiana University	\$1.95	\$114.00	58.43	9.12
Athens, Ga.	University of Georgia	\$1.06	\$56.56	53.2	6.21
Charlottesville, Va.	University of Virginia	\$1.10	\$82.23	75	8.11
Flagstaff, Ariz.	Northern Arizona University	\$1.71	-	-	-
Iowa City, Iowa	University of Iowa	\$0.77	\$43.07	56.04	5.77
Missoula, Mont.	University of Montana	\$1.62	\$53.73	33.18	3.01
Muncie, Ind.	Ball State University	not tracked	not tracked	not tracked	not tracked
	Peer Average	\$1.37	\$69.92	55.17	6.44

Service Analysis / Service Scenarios

- Guiding Principles
 - Service Should be Simple:
 - For people to use transit, service should be designed so that it is easy to use and intuitive to understand
 - Service Should Operate at Regular Intervals:
 - In general, people can easily remember repeating patterns, but have difficulty remembering irregular sequences.
 - Routes Should Operate Along a Direct Path:
 - The fewer directional changes a route makes, the easier it is to understand. Circuitous alignments are disorienting and difficult to remember.
 - Routes Should be Symmetrical:
 - Routes should operate along the same alignment in both directions to make it easy for riders to know how to get back to
 where they came from.
 - Routes Should Serve Well Defined Markets:
 - The purpose of a route should be clear, and each should include strong anchors and a mix of origins and destinations.
 - Service Should be Well Coordinated:
 - At major transfer locations, schedules should be coordinated to the greatest extent possible to minimize connection times for the predominant transfer flows.

Service Scenarios

- Approach:
 - Follow guiding principles
 - Incorporate technical findings and stakeholder input
 - Provide options
 - Two scenarios for each service
 - Consider new technologies

BT Service Scenarios

- Scenario 1: "Out-and-Back Service Model"
 - Each route operates linearly to form a grid network
 - Most routes provide both local and regional connections
 - Transfers can accommodate movements between corridors
- Scenario 2: "Corridors and Circulators Service Model"
 - Fast and frequent service in key corridors
 - Bi-directional circulators for local access
 - Transfers can accommodate first/last mile connections

Microtransit

- Technology-driven demand-response service
 - More coverage than fixed-route service
 - More flexibility than traditional dial-a-ride service
 - Familiar interface for those who have used Uber/Lyft app (phone reservations also possible)
 - More control over vehicles and driver vetting than Uber/Lyft

Turn-Key Service

Technology Deployment

IU Service Scenarios

- Scenario 1: "Dedicated Circulator Model"
 - Network built around a dedicated circulator in the core of campus
 - Circulator is clockwise only, but operates in a relatively compact loop
 - Other routes provide feeder service from outlying areas
 - Transfers can accommodate first/last mile connections
- Scenario 2: "Bi-Directional Service Model"
 - Two-way movement is available throughout the shuttle network
 - Each route is either bi-directional or overlaps another route operating in the opposite direction
 - Core circulation is less frequent, but more direct

Autonomous Shuttles

- Driverless fixed-route vehicles
 - Low speed (< 15 mph)
 - Relatively low-capacity (~ 10 passengers)
 - Fully electric (14-hour range)
 - Several on-going pilot programs

THANK YOU

00

=T BLOOMINGTON TRANSIT

THE REAL PROPERTY AND IN THE REAL PROPERTY AND INTERPOPERTY AND IN

Rural Transit

	Rural Transit Ivy Tech/Cook Schedule			
Departs	Arrive	Arrive	Depart	Arrive
Downtown	Life Science &	lvy Tech	lvy Tech	Downtown
Transit Center	Nursing	Main Campus	Main Campus	Transit Center
6:40 AM	6:55 AM	7:00 AM	7:00 AM	7:15 AM
7:15 AM	7:25 AM	7:45 AM	7:45 AM	8:15 AM
8:15 AM	8:25 AM	8:45 AM	8:45 AM	9:15 AM
9:15 AM		9:45 AM	9:45 AM	10:15 AM
10:15 AM	10:15-10:30 AM	10:45 AM	10:45 AM	11:15 AM
11:15 AM	11:15-11:30 AM	11:45 AM	11:45 AM	12:15 PM
12:15 PM	12:15-12:30 PM	12:45 PM	12:45 PM	1:15 PM
1:15 PM	1:45-2:00 PM	1:45 PM	1:45 PM	2:45 PM
2:15 PM	2:45-3:00 PM	2:45 PM	2:45 PM	3:15 PM
3:15 PM	3:45-4:00 PM	3:45 PM	3:45 PM	4:15 PM
			4:15 PM	4:45 PM
4:15 PM		4:45 PM	4:45 PM	5:15 PM
			5:15 PM	5:45 PM

